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HEAT CONDUCTION OF ORTHOTROPIC HALF-SPACE
FOR MIXED DISCONTINUOUS BOUNDARY
CONDITIONS

V. P. Kozlov, N. I. Yurchuk, and UDC 517.966
N. A. Abdel'razak

The nonstationary temperature field in a half-space heated across a circular region with a known radius r
= R over a surface z = 0 of a semibounded body is found. Outside the circular region r > R the initial
temperature 6(r, 0, v) = T(r, 0, 1) — Tg = 0 is maintained on the surface z = 0. Particular regularities of

development of nonstationary temperature fields along the axis r = 0, z = 0 and over the surface z = 0,
0 < r < R are given.

The problem of increasing the accuracy of thermophysical measurements is inseparably linked with the
creation of precision tools for implementation of the theoretically postulated boundary conditions that are the basis
of any method of determination of thermophysical characteristictics. In a technique for a thermophysical
experiment, two kinds of boundary conditions can be realized most simply and sufficiently: constancy of the surface
temperature of the investigated body and constancy of the specific heat flux if the latter is initiated by a quick-
response electric heater.

The present work is aimed at solving the relevant original two-dimensional problem on transient heat
contuction for isotropic and orthotropic half-spaces when the indicated boundary conditions on the surface (z=0)
of the investigated semibounded body exist simultaneously, i.e., in the region (z=0, 0 < r < R) a constant specific
heat flux gy = const is prescribed, while outside the circle (z=0, r > R) a constant temperature equal to the initial
To is maintained.

Solution of such two-dimensional problems of mathematical physics in the presence of mixed discontinuous
boundary conditions of the first and second kind usually involves the analysis (solution) of paired integral equations
(L, 21.

In the present work it is shown that an analytical solution of the formulated two-dimensional problem of
transient heat conduction with mixed discontinuous boundary conditions for certain ranges of cylindrical
coordinates (r, z) in the investigated body can be constructed without solving directly the paired integral equations.

Mathematicat Formulation of the Problem. It is required to find a solution of the following system of
differential equations for the functions

6,(rnz,0) =T, (r,z,1)~Tyg=6, (0<r=sR, z>0, 1>0)

and
6,(r,z, 1) =Ty(r, 2, 1) = Tg=86, (r>R, z>0, 1>0):
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at the boundary conditions

6, (r.z,0)=6,(r.2,0)=0, 3)
_3‘5_1__(:;;&9;_2:%’ Ir| <R, z=0, 1>0, *
8,(r,0,1)=0, |r| >R, z=0, 120, )
2029 _o 20,250, 20, (6)

86y (r, ©, 1) _ 06, (r, ©, 1) _ 36, (=, z, 1) 0. %
dz dz ar

6, (R, z,1) =6, (R,2,0), 2z>0, 3)

), (R 2,1) 3, (R, 2,7 )

>0.
or or v 2>0

Sequence of the Solution. Step 1. At 90;/9t =0, i = 1, 2, the solution of the steady-state two-dimensional
problem for the function 6y (r, 2) = 6;(r, z) (the body is isotropic, K; = |, where K, = a,/a; is known {4)) is

2g9 = i -
8 (r,z2)= o [ exp (- x2) Jo (xr) Sin xR = xR cos xR dx. (10)
At 0

2
X

Step 2. Now we write the Fourier sine and cosine transformations of solution (10) for Il > R and
Irl < R:

= 2q4 |7 R
6. (r,p) = f6(r, 2) cos pzdz = yERb Iy (pr) J texp (- tp) dt +
0 r

,
T K T
+ =1y (pr) J texp (= tp) dt — — Iy (pr) + —
2 0 2p 2p

Yo
A

R 1 1 (11
Io(pr) [ texp (= tp)dt — — Iy (pr) + —t,  |r| < R;
0 P p

® o 2q0p Rt
8, (r.p) = [ 6(r, z) sin pzdz = 7}0€ f > sh (tp) Ky (pr) di =
0 0

_ 290 f (12)
= O(pr)glsh(lp) dt, |r| >R. ,

Summary of step 2:
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xJo (xr) sin xR — xR cos xR (13)

exp(—= Rp)(l +pR) 2 =
— ~ I (pr 2 =—J 2 2 2 dx,
p p T 0 x +p X
r<R;
pR ch pR — sh pR ® Jo (xr) sin xR ~ xR cos xR
Ky (pr) 5 =p [ 5 3 3 dx, (14)
p 0 x +p X

rzR.

Step 3. Applying Laplace and, respectively, Fourier cosine and sine transformations to differential cquations
of transient heat conduction (1) and (2), it is casy to obtain a solution for &,.(r, p, s) and 8y.(r, p, ) in the form

q(s 2. s
By (r.p.s) = —7% T+ AP 9) I (r\/(p +2
Alp +Z

v

Using boundary conditions (7) and (8), we arrive at the following system of equations:

f gis + A(p, s) I R\/p2+£ cos pzdp =
0 2 5 a
A p +z

R\/(p2+i-)] sin pzdp , (N

2 2 s 2, s

gA(p,S)\/(p +;) 5 R\/(P +3

=——}°B(P‘S)\/(p2+ij K, R\/(pz-%i—)] sin pzdp . (18)
0 /

Step 4. We now use an integral relationship between the Fourier sine and cosine transformations of the

(Kg=1):
(1)

(16)

By (r.p, s) = B(p. s) Ky p2+§)], r>R.

] cos pzdp =

following form
J e (s, p)sin pzdp = [ g (s, p) cos pzdp (19)
0 0

where

f (x) dx 20)

#(s“p)=pT ,
0 (x2+p2+§) \/(pz+§)
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f JM_ (21)

g(s,p) = >
0 x +p +—

Applying relations (19)-(21) to each of Egs. (17), (18), we can write

70 = (xd
g (s, p) = qz(q)s +A(p,s) Iy R\/(p2+%)} - ._2_‘_(_")2_)‘? 2)
A Pt 0 x"+p +E

e d
(s, p) =B (p,s)K R\/(p2+§)]=pf N () dx : (23)
0 (x2+p2+§) \/(p2+ s)

a

= ae 7+ us ) -

[y (x) dx (24)

2 S 2 N
Hy (s, 0) = ~B(p,5)\/(p +;) K, R\/(p +5)] =
fo () & | (25)
(x2+p2+£) \/(x2+£)
a a
Let us pass to Eq. (13) in which the complex V p2 + s/a and r = R can be taken as the parameter p. Then

2 N 2 N
el exp[_k\/(w;)) [HR\/(M;)]_
2 s 0 P a 2.5 -

p t-
xJo (xR)  sin xR ~ xR cos xR (26)

20:)
_fz 2 .S 2 dx.
7f0x+p+; X

=p [
0

2

Multiplying (26} by g(s)/4 and comparing the obtained expression with Eq. (22), we find that

/(%) = Jo (xR) sin xR -’:R cos xR El(lx) 1 (27
2, s 2,8
7 (5) exp (—R\/(p +Z)) (1+R\/(p +Z)) 28)
A(p,s)y= -7 P .
P+

According to (23) and (27) we have
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B (p. s) K

2 s 25 bod JO(XR)
R - = T
\/(,,-4‘1)) { - - . x
x +p +; vx-#;

% sin xR — xR cos xR
X

dx. (29)

If we differentiate Eq. (13) with respect to r and assume that p -+ V p2 + s/a, then employing expressions
(24) and (25) it is easy to find thatat r = R

fr (x) = = 288 ;. (xR) (sin xR ~ xR cos xR) , (30)
. 2 = R
. 2 2 PG(S) J| (xR)
sV [0 3 xRy [o +'§))= R e e
0 x" +p +E
% sin xR — xR cos xR dx 31

Vi

Thus, solutions (15) and (16) with the use of (28), (29), and (31) can be written as:

V)
Alp

elc(rY Py S)

exp (—R\/(P2+%)) 1+R\/("2+§)) | (32)

e
0 a

2.8
X +p +‘&
Ko ’\/(P2+£)
sin xR — xR cos xR de = — 2q (s) a %
T 7iA
2, s 2 s 2.s
\/(" +Z) \/(P +;) KWR\/([) +5)}

}"Jl (xR) (sin xR — xR cos xR) dx., —%<arg¢§s%. (33)

X p
0 (x2+[72+i) \/(x2+§>

Since for further studies and practical applications it is of interest to have a solution for the temperature
field 8 (r, z, 1) in the first region (0 = r < R, z 2 0, v > 0), we find the inverse transform of (32):
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B,(r,z,5) = X

-, Y5 >
Avs nA

va p

_ a » o [r“/(p2+-i—)]
qs\/Ecxp[ \/E]_Zq(s)j
0 +

s
a

xexp( R'\/p + )]Cospzdp—-Mflo[rV(pz-{h%)J X

(2 s]
a -—
) cospzdp=21%ﬁx

xr Rx
Jo || cos |—| dx =
ey
exp [—Z\/(x2+%)] _
Jo (x7) sin (xR) — ;R cos (xR) dx. (34)
Vi
a
or at g(s) = gg/s in the time domain we have

ggR = r sin x — x €os x
6,(r.z,1)= ——-f —X| 5 X
nd 0 R

2— o0
- 3:,(18) g

x

x{exp(———z-x] erfc( 2 —i\/—&—r]-—
R 2Var R

— exp [-—ix erfc z +£m)}dx. (35)
R 2Var R

For an orthotropic body, solutions of (34) and (35) are easy to obtain in the following form:

exp Vs+ a,,vcz/Rz)
W) Va, % Va,

6,(r,z ) = Z
nA, 0 Vs + ax2/R?
JO(Lx)de, 0<r<R; (36)
R X
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q it sin x — X COS X
6, (r.z,7) =———-0—'-Ri-—-fjo _’.x____z_...__
A, VK o0 R x
ar)=qp z a
r<R

x{exp [—iv K, x
R

erfc Z__2 ar| —
2Vanr R

erfc z +£\/—c_2—1_]]dx. 37

- exp

iVKax
R

2Vaz R r

On the axis r = 0 (z, v = 0) solution (37) acquires the form

6, (0 ) 2g5 VT 2 = R z
10,2, 1) = exp |——] e - X
b, Vr 4az 2Var Vaa,r
Z
Wa,r
X |arctan - v [ ert exp (— xz) dx||. (38)
zVK, 2 ] zVK,

Recall that b, = 1,/Va,, K, = a,/a;. The excess temperature at the center of a heating spotat r=z =0 on
the surface of the considered orthotropic body is determined by the following expression:

-
6, (0,0, 7) = %0 terf( R ] (39)

b vm 2Vaa

z

In a steady-state thermal regime (r = =) solution (37) has an analytical extension to the second region
r > R. Thus, for any point r and z we have

2 = z r
8;(r, z, @) = %R Joexp |- — VK x| Jg |— x| %
bAVE 0 R R
MOXZ XX e, i=1,2. (40)
X

At K, = 1 we have the corresponding steady-state solution from (40) for an isotropic half-space heated
across a circular region (0 < r < R, z = 0) by a constant heat flux with temperature Ty outside the circle
(r > R, z = 0) being maintained constant at the boundary of the given body [4].

At z =0 from (40) the value (distribution) of the steady-state temperature on the surface of the orthotropic
half-space is obtained in the region of a circular heating spot (0 £ r < R):

2q9R | r

A, VK R
8,(r,0, ®) = ™2 ¥ % (41)

0, r=R.

The stationary value of excess temperature (4) on the axis r =0 (z = 0) can be represented as
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2 2z R
8, (0, z, ») = SR I - — VK, arctan , (42)
A, VK, R z VK,
and according to (41) and (42) at the central point of the circular heating spot it acquires the simple form
2g 4
6 (0,0, ») = ok (43)

MZ Kﬂ .

The relationship between the specific heat flux 1,0 8(r, 0, )/ 3z = g*(r) at any point of the boundary surface
z=0, r 2 0 and the prescribed specific heat flux gg = const is as follows

Based on the above analytical representations, formulas can be obtained for determination of the
thermophysical properties of orthotropic materials (without loss of their integrity) provided that theoretically
postulated boundary conditions (3)-(9) are realized in the technique of the thermophysical experiment.

NOTATION

01(r, z, 1), B(r, z, 1), excess temperatures in the corresponding domains of the variable r (throughout the
text); ro, r, R, radius of circle and cylindrical coordinates, respectively; ¢(z), go, specific heat flux; K, = a,/a,,
parameter characterizing the relationships between thethermophysical properties in the corresponding directions;
s, p, parameters of the integral Laplace and Hankel transformations; Jg(x), J|(x), Bessel functions of the zeroth
and first order; /o(x), /,(x), Ko(x), K| (x), modified Bessel functions of the corresponding order.
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